Semester: I

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 (Autonomous)

End Semester Examination: Jan.2022 Faculty: Science and Technology

Program: B	SscComp05	SET: B

Program (Specific): BSc (Computer Science) Course Type: CC

Class: F.Y.B.Sc.Comp Sci.

Max.Marks: 35

Name of the Course: Mathematical Statistics

Time: 2Hr Course Code: 22-CSST-112

Paper: II

Instructions to the candidate:

1) There are 4 sections in the question paper. Write each section on separate page.

- 2) All Sections are compulsory.
- 3) Figures to the right indicate full marks.
- 4) Draw a well labelled diagram wherever necessary.
- 5) Use of statistical tables and scientific calculators are allowed.

SECTION: A

Q1) Choose the correct alternative in each of the following:

[1x 5]

1. If $A \subseteq B$, where two events A and B defined on sample space S then AB =

- a) A
- b) B
- c) A^c
- d) B^c

2. If X is a random variable then Var(aX-b) =

- a) aVar(X)
- b) Var(X)+b
- c) aVar(X)+b
- d) $a^2Var(X)$

3. Occurrence of at least one of the event out of two events A and B defined on sample space S is given as

- a) AB b) AB^c c) (AB)^c d) AUB

4. If $X \sim B(10,p)$ and E(X) = 5 then value of p is

- a) 0.5
- b) 0.05
- c) 0.13
- d) 0.25

5. If S is sample space then P(S) is

- a) 1
- b) 0.5
- c) 0.25
- d) 0

Q2) Attempt any four from the following:

 $[1 \times 4]$

- 1. Define Finite sample space.
- 2. In how many ways a committee can choose 6 members from 13 members for a meeting?
- 3. Define Mutually exhaustive events
- **4.** If P(A) = 0.4 then find $P(A^c)$.
- **5.** Explain the term "Event"
- **6.** Define the term "Relative complementation of A given B".

SECTION: B

Q3) Attempt any four from the following:

 $[2 \times 4]$

1. For the following probability distribution of X

X	0	1	2	3	4
P(X = x)	k	3k	4k	5k	2k

Find

- i) The value of k
- ii) $P(X \ge 1)$
- 2. If A and B are two events defined on sample space S such that $P(B) = \frac{1}{4}$ and $P(A|B) = \frac{1}{2}$ then find $P((A|B)^c)$.
- 3. Define variance of a discrete random variable. Also state any one property of variance.
- 4. State Baye's theorem.
- 5. Discuss Non-deterministic experiment with an example.
- 6. Write any two real life situations where
 - i) Poisson distribution is applicable.
 - ii) Binomial distribution is applicable.

SECTION: C

Q4) Attempt any four from the following:

 $[2 \times 4]$

- 1. State additive property of Binomial distribution.
- 2. A company consists of 2 managers and 1 team leader. Write the set for the following events that it consists
 - i)At least one manager.
- ii) First is a team leader.

- 3. State multiplication theorem.
- 4. The discrete r.v. X has following probability distribution

X	-1	0	1	2	3
P(x)	0.15	0.20	0.30	0.25	0.10

- i) Mode of X.
- ii) $P(X \le 1 | X \le 3)$
- 5. Write axioms of probability.
- 6. Let A and B be two independent events defined on Ω such that P(A) = 1/3, P(B) = 1/4. Find P(A' B), P(A|B).

SECTION: D

Q5) Attempt any two from the following:

 $[5 \times 2]$

1. Following is the Probability mass function of a discrete r.v X:

X	4	5	6	7	8
P(X=x)	0.15	0.20	0.30	0.25	0.10

Find i) P(4 < X < 7)

2. A random variable X has following discrete uniform distribution.

$$P(X) = \frac{1}{20}$$
; $x = 1, 2...20$.

Find E (X) and Var (X)

- 3. Define distribution function of a discrete random variable X and state its four properties.
- 4. If D_1 and D_2 form partition of a sample space $P(D_1)=0.2$, $P(D_2)=0.8$ and $P(A|D_1)=0.2$, $P(A|D_2)=0.3$ then find $P(D_1|A)$ and $P(D_2|A)$
